index.php

 An inquisitive, perceptive, and innovative engineering approach by Falcon Engineering helped Royal Roads University avoid unnecessary construction costs, as well as disruptive work, in the design for a geoexchange ground coupling system for the Dogwood Auditorium.


The Project

A “geoexchange system” may sound complex, but it is really as simple as its name implies: exchanging “heat” from earth materials or groundwater below the earth’s surface with the building’s HVAC systems, so as to provide heating and cooling energy, all without consuming fossil fuels or adding to the building’s Carbon Emissions. Our blog, An Introduction To Geoexchange, gives an overview of geoexchange engineering systems.

Falcon’s Energy Engineering team has completed just such a project at the Dogwood Auditorium at Royal Roads University, near Victoria BC.

The Royal Roads Campus is situated at the base of a prominent escarpment slope. Areas on campus along the base of the slope have high water tables and, in some areas of the Royal Roads campus, footing interceptor drains are required to control shallow groundwater to protect buildings and infrastructure. Water intercepted by these drains throughout the year is collected and conveyed by pipeline as stormwater discharge. Several years ago, the campus irrigation system was outfitted to use water from the interceptor drains as the main source of water for grounds irrigation to make beneficial use of the intercepted water.

When a project arose to convert the swimming pool (originally built in the late 1950s for the former military college) to a new purpose, the Royal Roads planners wanted to ensure that reducing carbon emissions was an important component of the project plan and budget.

Royal Roads University selected Falcon’s Energy Engineering team, under a competitive RFP process, to examine the natural setting and propose a solution for an alternate energy system to be applied at the legacy building, repurposed as the Dogwood Auditorium.

The project to regenerate the building for learning and events space was opened in its new format in Spring 2021, including the geoexchange heating and cooling system. The system resulted in significantly reduced Greenhouse Gas (GHG) emissions for the Dogwood Auditorium, while providing the energy for comfort conditions throughout the year, with little reliance (peak heating) on fossil fuel energy.

From a Site Visit to Design of the Innovative Geoexchange System

Falcon was selected to design the new geoexchange ground heat exchange (GHX) system (HVAC design was already awarded to another firm), and in the summer and fall of 2019, conducted a thorough site-specific Geoexchange Suitability Assessment (GSA) to investigate the most suitable geoexchange options for the project site. The initial concept envisioned by Royal Roads University (RRU) included an open-loop water well geoexchange system, whereby groundwater would be pumped from one or more extraction wells from which the groundwater would be passed through a heat exchanger, and subsequently re-injected to the ground by one or more injection wells.

However, through the process of conducting the GSA, Falcon became aware of the presence of the significant drain water discharge. Exploratory investigations by Falcon of rushing water in manholes near the prospective Dogwood Auditorium led to the reveal of an existing, readily available energy source, already “plumbed” near the surface.

Falcon conducted further investigations and analysis to establish that the drainage water would be of sufficient flow quantity, and at a satisfactory temperature throughout a given year, before committing to the client that the drainage water would serve as a suitable and reliable ground source coupling for the geoexchange system.

Data from Environment Canada of seasonal climate norms over a period of approximately 30 years was critical to the analysis. Flow rates of the drainage water were measured over the spring and summer of 2019 and added to anecdotal information from the RRU Operators of the irrigation system. Together, these data sets were applied to a calculated “stress test” to ascertain the values of the drain water system as a source of energy to moderate indoor temperatures of the Dogwood Auditorium, as well as to ascertain the likely impacts of the “heat rejection” back into the drain water system during each of the four seasons. The combined analysis demonstrated that this drain water system could be relied upon as an appropriate energy source for heating and cooling the Dogwood Auditorium, and that heat rejection from the Dogwood Auditorium would not deleteriously affect the adjacent ocean water temperatures, to which the drain water from RRU flows.

Thus, Falcon was able to demonstrate the values of the proposed ground source coupling to the geoexchange system and was also able to demonstrate that the environmental impacts of using the ground source coupling (the drain water system) would not impose undesirable impacts (such as excessively warm temperatures) on the drain water or the ocean water.

With any type of retrofit or repurposing project, unexpected findings and conditions are prone to be discovered and this project was no exception. Although the intercepted groundwater-derived drain water had been used for many years by the irrigation system without any history of debris or sedimentation problems, new flows were recently added to the drain water system that included contributions from rooftop drainage. In many geographic locations, rooftop drainage would not pose significant problems; however, on the heavily treed RRU campus, rooftop drainage can be laden with organic debris. In this case, organic debris in the form of evergreen needles and other organics, entered the drain water system from the new sources and contributed to maintenance concerns for both the existing irrigation system and the new geoexchange system. A simple screen and diversion modification was implemented by the Project Civil Engineer in Fall 2021 and seems to be working effectively. Ongoing monitoring is warranted and perhaps additional modifications may be required.

An Energy Efficient Building System

The portion of the heating load served by ground source heat pumps for the Geoexchange System, employing energy derived from the flows of the drain water system existing on campus, results in a 98% reduction in emitted CO2e as compared to the “base case” of standard naturally aspirated boiler and standard air handling systems (commonly found in buildings of that age and utility).

Combined with the relatively low costs of drawing energy from the existing groundwater drainage system, when compared to employing a drilled well system and open or closed loop geoexchange system piping, the resultant system provided the client with:

  • a lower capital cost
  • very low energy consumption characteristics in operation
  • very low GHG emissions,
  • and comfortable conditions throughout the year.
construction of Dogwood Auditorium

A win for the client, a credit to the design engineers and installation contractors, and a credit to the institution (Royal Roads University) who commissioned the project.

Aligning with the Royal Roads University Climate Action Plan

The project to repurpose the former swimming pool at RRU into what is now known as the Dogwood Auditorium reflects the best in contemporary construction and facilities planning. As the Royal Roads University Climate Action Plan calls for significant GHG reductions by 2035, it was seen by University planners as an important aspect of the new use of this existing building that it would not add to the University’s GHG emissions, while simultaneously providing a much-needed events and learning space for the campus.

Consequently, as the geoexchange system delivers on the heating and cooling needs of the Dogwood Auditorium, it does not add CO2e liabilities for RRU, and provides modern ventilation and comfort conditions even when fully occupied by Convocation Ceremonies, University staff meetings, student study areas, and community events. 

From an Aged Facility to a State-of-the-Art Auditorium

Royal Roads University and Durwest Construction set out with a vision to repurpose an aged facility and transform it into a state-of-the art auditorium. The level of innovation and commitment to sustainable transformation is a remarkable and defining feature of the redevelopment project. Re-purposing of the drain water, that would otherwise have been wasted, into an energy source seemed to mesh well within the vision of this type of transformation. 

As a standard of practice at Falcon Engineering, we emphasize the importance for careful consideration of both the setting- and the building-specific features of a project, to thoroughly examine opportunities for development of a low carbon energy system. In the case of the geoexchange ground coupling at RRU Dogwood Auditorium, this standard of practice ensured that the opportunities inherent in the existing drain water system were recognized early in the investigation process, and subsequently led to an affordable and successful geoexchange system to serve the Dogwood Auditorium. Falcon Engineering feels honoured to have played a role on this team.

You can find out more about our Energy Engineering services here and more about our team.

If you have questions about our experience or the geoexchange work we do, get in contact by using our contact page.

Want to learn more about energy engineering? Check out some of our other blogs!

By Loïc Letailleur, P.Eng.


Four years ago, we used to play a game as a family while driving around – who could spot the next electric car? They were rare and sometimes you would go days without seeing one. Now, they are everywhere, every day, no matter which city or small town you are in. Most people likely don’t realize how many there are because they don’t all stand out (they aren’t just Tesla’s)! 

With the rapid adoption of electric vehicles comes the requirement for charging infrastructure. There are charging speeds (is the limiter of the vehicle or the charger), people’s driving habits and also public expectations. Without getting into the psychology of range anxiety or other concerns, let’s review some of the key points related to electric vehicle (EV) charging.

What are the different levels of Electric Vehicle Charging?

At Falcon, we provide capital planning services for all types of buildings. As a unique engineering firm, we have developed a proprietary costing database. We regularly update this database with our retrofit projects to provide new and existing clients with a detailed capital plan for their upcoming projects. We are even able to break budgets into project phases for comprehensive planning purposes.

  • Level 1 – Basic 120V wall outlet (15 or 20 Amp)
    • This will charge the average EV at approximately 8km/hr.
  • Level 2 – AC charger, 208/240V from 15A to 80A of delivered energy
    • This will charge the average EV at 15-80km/hr.
  • Level 3 – DC fast charger, from 20KW to 350KW
    • This can reach charging speeds over 1,000km/hr.
    • It bypasses the inverter in the vehicle.
    • Vehicles have limits to what they can accept for charge (not many can take 350KW).

What are the Electric Vehicle Charging Standards and how do they differ?

There is one Level 2 charging standard globally and it is the J1772 plug.  All vehicles have this outlet except for Tesla, which comes with an adapter.

Globally, there are three major Level 3 charging standards:

  • Tesla – Proprietary charger plug except in the EU.  The Supercharger network in the USA is slated to be opened to other vehicles, though this will require a special adapter.
  • Chademo – Asian standard, was adopted early by Nissan – many fast chargers will include a Chademo connector. Not many vehicles require this standard.
  • CCS – European standard, has become the global standard. It is the plug included in the majority of vehicles (except Tesla).

When assessing which charging level you will most frequently use, you need to assess the following factors:

  • What is your daily distance travelled?
  • Do you have access to charging at your residence? And what level?

The majority of individuals will drive less than 50 km per day, and their vehicle is parked for a minimum of 8 hrs overnight. This means for those fortunate enough to have access to charging at home, a simple Level 1 charger that will provide 8km/hr (60+ km of range overnight) is sufficient. 

electric vehicle charging map for British Columbia
Image Source – Google Maps

A Level 2 charger at home will allow for more rapid charging or allow for the charging to occur during off-peak hours (maybe not start charging until 0100 – with a time of day utility billing coming soon this may be advantageous).  On the rare occasion that you have returned from a long road trip with a nearly empty battery, you still don’t need to worry as overnight you will charge enough for the next typical driving day. If back-to-back extended trips are required, then a visit to a public Level 3 charger is an easy way to boost up the available range.

For individuals who do not have access to charging at their home, Level 3 charging will be similar to stopping at the gas station and will have to be done approximately once a week depending on the range of the car and the distances covered.

What about at Work?

ev charging system

One of the most frequent questions we are asked by Clients is should electric vehicle charging be provided at the workplace? To answer this, it is important to go back to the previous analysis of daily driving habits.  If individuals have access to charging, then it would be rare that needing to charge at the workplace (or the mall) would be required.  Even for people without home access to charging, the rapid increase in the number of public fast charging stations allows for easy access to charging needs people may have.  I would consider the availability of workplace charging a perk and not a necessity.

The exception to this is for fleet vehicles.

I am a Developer and What Should I Do?

In Part II of Electrical Vehicle Charging our engineering team will discuss the options for both existing and new multi-family and mixed-use buildings. 

Do you have any questions? Contact our skilled engineering team today and we can answer all your electrical engineering questions. 


Need to learn more about our engineering services? Visit our integrated engineering services page.

Want to learn more about electrical engineering? Check out some of our other blogs!

Are you wondering how to get the right retrofit for your project?

Our team of interdisciplinary engineers can provide customized niche mechanical engineering solutions for projects ranging from HVAC design to deep energy retrofits. Our team has a proven track record of results on these projects and are well versed in requirements for different client types. We bring a commitment to service that extends through design, construction, and post-construction activities.

Read on as we elaborate on some of our niche mechanical and industrial engineering services that set us apart from other engineering companies:

Capital Planning

At Falcon, we provide capital planning services for all types of buildings. As a unique engineering firm, we have developed a proprietary costing database. We regularly update this database with our retrofit projects to provide new and existing clients with a detailed capital plan for their upcoming projects. We are even able to break budgets into project phases for comprehensive planning purposes.

Mechanical engineering room

Design

Design is an integral part of the engineering and construction phase of your project. We are experienced with tailoring bespoke solutions that best suit

the need of your project’s purpose and building type. Some of our niche design services include:

Lifecycle-Centered Design. Building and engineering represent only a fraction of the overall lifecycle costs of a mechanical project. With this in mind, we take an approach that is not focused solely on the installation costs of a project. We include operating cost considerations like energy efficiency, ease of maintenance, reliability, and planning for replacements at the end of service life. Our lifecycle-centered design approach applies to all our projects.

Heat Pump Thermal Plant Design. We have developed several bespoke heat pump and heat recovery thermal plant designs. These archetypal systems can be adapted and modified to fit the needs of many building types and configurations. The systems have been designed to eliminate unnecessary complexity, undue costs, and to reduce the maintenance burden.

Retrofits

We know that every project has a specific purpose with distinct needs to suit the environment in which it operates. We have expertise in planning, managing, and implementing large-scale mechanical retrofits. We offer retrofits in the following areas:

Deep Energy Retrofits. The goal of deep energy retrofits is to provide systems that not only increase energy efficiency but also renew aging equipment to improve overall effectiveness and reliability. Often this involves the replacement of major components and systems. These retrofits often need to be carefully planned and phased in to keep the facility as operational as possible throughout the process


Conventional Energy Retrofits. If you don’t need a large-scale retrofit, our team is also able to replace building mechanical systems on a component-by-component basis. These could consist of boiler upgrades, terminal equipment replacement, and control system upgrades. We replace aging equipment or systems to optimize lifecycle costs and reliability.

Business showing their mechanical engineering systems

Prime Consulting. Having worked with both private and public institutions, we are experienced in consulting on contract awards for facility upgrades or new system implementation. Depending on the project, we can provide full design services as well as managing tendering, providing recommendations for contract award, and administering the construction contract throughout the implementation phase. Our experience with many different building types makes us well versed in the different requirements for all client types.

Industrial and Clean Facilities

At Falcon, we have developed specialist expertise for industrial buildings. From ventilation systems to specialty water system design, our team will develop the right solution for your facility. Some of our specialized areas include:

  • Precision environmental control
  • Clean-room filtration and contaminant control
  • Laboratory ventilation
  • Specialty exhaust and ventilation systems
  • Specialty process piping systems
  • Compressed air system design
  • Process heating and cooling
  • Process water system design
Mechanical room

Is it time for a retrofit for your facility or building?

We are confident that our team will deliver designs that will add the right components to your facilities’ systems to increase reliability and efficiency. Our engineering professionals are seasoned experts, who know how to create and implement a lifecycle-centered approach to your system upgrade. You can guarantee practical and innovative solutions, designed for your specific needs.

Have questions about a project? Contact us!


Need to learn more about our services? Visit our integrated services page.

Want to learn more about mechanical engineering? Check out some of our other blogs!

There is no doubt that climate change is one of the biggest issues facing our society. Globally, almost 60 billion tonnes of greenhouse gasses are emitted every year, while the current warming trend is proceeding at an unprecedented rate. In British Columbia alone, we have experienced havoc caused by climate change, from back-to-back years of record spring precipitation causing historic flooding followed by hot, dry summers that contributed to droughts and wildfires.

Why Now?

Since its inception, Falcon Engineering has been dedicated to providing efficient, cost-effective solutions to our clients. We have always encouraged going above and beyond Code and Regulatory baselines by showing clients not only the environmental benefits but also the economic payback over the investment of the systems. We have been fortunate to work with progressive forward-thinking clients that have seen the value in these systems, and have been part of projects that set the benchmark for low energy consumption in their respective sectors. As a firm, we wanted to look internally and see what changes we could make to demonstrate our commitment – and not just talk, but walk too!

wildfire

2021 was a year of extremes in British Columbia, beginning with record-breaking high temperatures in June, which spiked at 49.6°C in Lytton, breaking the all-time highest temperature ever recorded in Canada three days in a row. What followed was a catastrophic wildfire that wiped out the entire village of Lytton, destroying the majority of buildings and killing two people. Massive wildfires burned throughout the Interior of British Columbia in the region’s worst fire season on record, with firefighters struggling to keep control and thousands of residents evacuated from their homes. The cost of wildfire suppression totalled $565 million.

After an incredibly dry and challenging summer, winter bought record-breaking rainfall, which caused severe landslides and flooding, closing off all highways from southwest BC to the Interior. Hundreds of homes were evacuated, while thousands of livestock were killed as the waters rose. The towns of Merritt, Princeton and Tulameen were decimated as their rivers flooded.    

Climate scientists have predicted that extreme weather events, such as those experienced in British Columbia in 2021, will increase in frequency and severity, bringing massive loss and disruption, as well as high costs for governments.

flood photo

climate change certified

As a leader in green, energy-efficient building systems, we are dedicated to providing sustainable energy engineering to meet our client’s needs, and our consulting teams bring skill sets that are unique amongst engineering firms. Our experience with district energy systems (such as VIU’s Mine Water District Energy System in Nanaimo), low carbon heating systems, heat recovery systems, solar photovoltaic and renewable energy generation provide a unique range of energy-efficient design options that can be tailored to our client’s projects. Drawing on our extensive portfolio of successful projects, we work closely with our clients and design teams to achieve innovative and sustainable solutions rooted in established engineering principles. 

With our commitment to helping our clients achieve the most efficient electrical and mechanical systems possible, we looked at ways our company could do more to reduce our carbon footprint. To do this, we enlisted the help of Climate Neutral.   

What Is Climate Neutral?

Climate Neutral is a nonprofit organization working with brands and consumers to eliminate greenhouse gas emissions. It was launched in 2019 and now works with hundreds of companies across more than a dozen industries globally. In just three years, Climate Neutral Certified companies have measured and offset over 2,000,000 tonnes of CO2e, equivalent to over 430,000 passenger vehicles being driven for one year.

Our 2021 Carbon Footprint

We worked with Climate Neutral as we measured and offset last year’s carbon emissions and identified ways to reduce future emissions. The process to become Climate Neutral Certified is a months-long effort to measure, offset, and reduce our carbon footprint:

Measure

We measured our 2021 carbon footprint at 169 tonnes. To arrive at this number, we looked at all of the emissions created from delivering our services, including employee commuting, business travel, utility bills, paper, and computer equipment. 

Offset

We offset these emissions by purchasing verified carbon credits. These carbon credits supported a portfolio of projects including schemes that will help avoid deforestation, improve forest management, support solar power generation, and encourage bioenergy generation.

Reduce

Last, but not least, we created Reduction Action Plans to help lower our emissions over the next 12-24 months, and the following are our first steps towards achieving this goal:

  1. We will reduce emissions from air and car business travel

We will write and implement a travel policy to standardize and regulate travel bookings. We will encourage staff to combine multiple projects per trip and reduce the number of in-person meetings by conducting virtual meetings.

  1. We will reduce emissions from employees commuting into the office.

We will be improving the bike storage area so that more staff can cycle to work and store their bike securely. We intend to introduce a bike-to-work incentive/sweepstake to encourage staff to walk, use public transport or cycle.

  1. We will reduce emissions from the use of paper contracts and couriers.

We have signed up with DocuSign to digitally send all our contracts in 2022. This will save paper and reduce emissions by cutting the use of couriers to deliver the physical documents.

To The Future

Falcon Engineering hopes to engage fellow consulting firms, contractors, and others in the industry to join in the commitment to reduce our impact.  The hundreds of brands certifying this year all go through the same process to measure, offset, and reduce their emissions. Together, Climate Neutral Certified companies are working to eliminate more than 1,000,000 tonnes of carbon emissions.  

At Falcon, we know we have to act now to solve a problem that we understand to be an urgent threat. We have committed to reducing our carbon footprint by 50% by 2030 and our Reduction Action Plans will help in achieving this goal. Climate change requires immediate action, and we’re proud to be part of the solution.

Climate neutral certified

If someone asked you to name the elements of a sprinkler system, could you do it? You’ve most likely seen certain elements before; on a basic level, there are sprinkler heads, piping, and valves – but there is so much more! A sprinkler system is designed to control or extinguish fires in the early stages, making it easier and safer for building occupants to exit the building, and for firefighters to extinguish any fire that remains. 

Beyond the importance of having a fire sprinkler system, an efficient layout/design is required to allow for cost control and high performance. The variations in building design, and the coordination needed based on components within the building, make fire sprinklers complicated in design. However, understanding the fundamentals of sprinkler design will provide good insight into the specific needs of the project and the detail required for specifications.

Determining the Water Supply

A fire sprinkler system begins with water and having enough of it to control a fire. Most sprinkler systems are automatic, meaning human intervention isn’t necessary. Because of this, a source is required, which can include city water, ponds, rivers, reservoirs, water tanks, and more. No matter the source, it must have a sufficient capacity.

Factors that determine the capacity include: 

  • Flow Rate (Gallons per minute/GPM)
  • Pressure (Pounds per square inch/PSI)
  • Duration (How long it can maintain the required pressure & flow)
  • Flow Test (provided by nearby fire hydrants)
Picture of a fire hydrant

Water supply is fundamental in the development of a sprinkler system, no matter the building layout. 

Understanding the Building

Picture of a school main entrance

As simple as it sounds, to determine the sprinkler system required, you need to understand the building. Typically, once a contractor has been selected, the contractor then engages their engineer during construction. Unfortunately, this approach can hamper coordination between the sprinkler system and other building elements. Common questions to ask are: Is this a commercial project? Industrial? Or are there specifics required for the building?

For projects where a performance specification is not appropriate, however, our team can provide full sprinkler design services including:

  • Sprinkler head layout
  • Pipe layouts
  • Pipe sizing

Wet, Dry, or Preaction System?

Beyond the capacity and building demands, it’s necessary to determine if a wet, dry, or preaction system is required. Fire sprinkler engineering services offered by Falcon include wet and dry systems, pre-action systems, and specialty gaseous systems for mission-critical infrastructure.

Wet systems, which have pipes filled with water at all times, are the most commonly used system for buildings. Water flows when each sprinkler head reaches its design temperature and the glass element bursts, allowing a plug to drop out.

Dry systems, as the name suggests, don’t contain any water, and are pressurized with air. When a sprinkler head activates, the air is discharged, causing an automatic valve to open and allow water into the piping system. Dry systems are generally reserved for areas with freezing concerns. Lastly, there are preaction systems, where the cost of an accidental discharge would be severe, in places such as data rooms. In this system, water is held back by a preactivation valve and activation relies on a separate trigger, providing another layer of protection or control when activating water.

Fire sprinkler engineering

Conclusion

If there is one point we hope you take away from this, it is that fire sprinkler systems are complicated yet essential. While there are many factors to consider with these systems, evaluation, assessment, and specifications are instrumental to the performance of the system.

At Falcon Engineering, we can offer performance specifications or full design and engineering services, depending on the specific needs of the project. We are committed to providing effective system designs for mechanical projects.

Should you have any questions about how our team can help you with your mechanical projects, including Fire sprinkler engineering, get in contact by using our contact page

Check out our service offerings here

Want to learn more about mechanical engineering? Check out some of our other blogs!