index.php

By Loïc Letailleur, P.Eng.


Four years ago, we used to play a game as a family while driving around – who could spot the next electric car? They were rare and sometimes you would go days without seeing one. Now, they are everywhere, every day, no matter which city or small town you are in. Most people likely don’t realize how many there are because they don’t all stand out (they aren’t just Tesla’s)! 

With the rapid adoption of electric vehicles comes the requirement for charging infrastructure. There are charging speeds (is the limiter of the vehicle or the charger), people’s driving habits and also public expectations. Without getting into the psychology of range anxiety or other concerns, let’s review some of the key points related to electric vehicle (EV) charging.

What are the different levels of Electric Vehicle Charging?

At Falcon, we provide capital planning services for all types of buildings. As a unique engineering firm, we have developed a proprietary costing database. We regularly update this database with our retrofit projects to provide new and existing clients with a detailed capital plan for their upcoming projects. We are even able to break budgets into project phases for comprehensive planning purposes.

  • Level 1 – Basic 120V wall outlet (15 or 20 Amp)
    • This will charge the average EV at approximately 8km/hr.
  • Level 2 – AC charger, 208/240V from 15A to 80A of delivered energy
    • This will charge the average EV at 15-80km/hr.
  • Level 3 – DC fast charger, from 20KW to 350KW
    • This can reach charging speeds over 1,000km/hr.
    • It bypasses the inverter in the vehicle.
    • Vehicles have limits to what they can accept for charge (not many can take 350KW).

What are the Electric Vehicle Charging Standards and how do they differ?

There is one Level 2 charging standard globally and it is the J1772 plug.  All vehicles have this outlet except for Tesla, which comes with an adapter.

Globally, there are three major Level 3 charging standards:

  • Tesla – Proprietary charger plug except in the EU.  The Supercharger network in the USA is slated to be opened to other vehicles, though this will require a special adapter.
  • Chademo – Asian standard, was adopted early by Nissan – many fast chargers will include a Chademo connector. Not many vehicles require this standard.
  • CCS – European standard, has become the global standard. It is the plug included in the majority of vehicles (except Tesla).

When assessing which charging level you will most frequently use, you need to assess the following factors:

  • What is your daily distance travelled?
  • Do you have access to charging at your residence? And what level?

The majority of individuals will drive less than 50 km per day, and their vehicle is parked for a minimum of 8 hrs overnight. This means for those fortunate enough to have access to charging at home, a simple Level 1 charger that will provide 8km/hr (60+ km of range overnight) is sufficient. 

electric vehicle charging map for British Columbia
Image Source – Google Maps

A Level 2 charger at home will allow for more rapid charging or allow for the charging to occur during off-peak hours (maybe not start charging until 0100 – with a time of day utility billing coming soon this may be advantageous).  On the rare occasion that you have returned from a long road trip with a nearly empty battery, you still don’t need to worry as overnight you will charge enough for the next typical driving day. If back-to-back extended trips are required, then a visit to a public Level 3 charger is an easy way to boost up the available range.

For individuals who do not have access to charging at their home, Level 3 charging will be similar to stopping at the gas station and will have to be done approximately once a week depending on the range of the car and the distances covered.

What about at Work?

ev charging system

One of the most frequent questions we are asked by Clients is should electric vehicle charging be provided at the workplace? To answer this, it is important to go back to the previous analysis of daily driving habits.  If individuals have access to charging, then it would be rare that needing to charge at the workplace (or the mall) would be required.  Even for people without home access to charging, the rapid increase in the number of public fast charging stations allows for easy access to charging needs people may have.  I would consider the availability of workplace charging a perk and not a necessity.

The exception to this is for fleet vehicles.

I am a Developer and What Should I Do?

In Part II of Electrical Vehicle Charging our engineering team will discuss the options for both existing and new multi-family and mixed-use buildings. 

Do you have any questions? Contact our skilled engineering team today and we can answer all your electrical engineering questions. 


Need to learn more about our engineering services? Visit our integrated engineering services page.

Want to learn more about electrical engineering? Check out some of our other blogs!

There is no doubt that climate change is one of the biggest issues facing our society. Globally, almost 60 billion tonnes of greenhouse gasses are emitted every year, while the current warming trend is proceeding at an unprecedented rate. In British Columbia alone, we have experienced havoc caused by climate change, from back-to-back years of record spring precipitation causing historic flooding followed by hot, dry summers that contributed to droughts and wildfires.

Why Now?

Since its inception, Falcon Engineering has been dedicated to providing efficient, cost-effective solutions to our clients. We have always encouraged going above and beyond Code and Regulatory baselines by showing clients not only the environmental benefits but also the economic payback over the investment of the systems. We have been fortunate to work with progressive forward-thinking clients that have seen the value in these systems, and have been part of projects that set the benchmark for low energy consumption in their respective sectors. As a firm, we wanted to look internally and see what changes we could make to demonstrate our commitment – and not just talk, but walk too!

wildfire

2021 was a year of extremes in British Columbia, beginning with record-breaking high temperatures in June, which spiked at 49.6°C in Lytton, breaking the all-time highest temperature ever recorded in Canada three days in a row. What followed was a catastrophic wildfire that wiped out the entire village of Lytton, destroying the majority of buildings and killing two people. Massive wildfires burned throughout the Interior of British Columbia in the region’s worst fire season on record, with firefighters struggling to keep control and thousands of residents evacuated from their homes. The cost of wildfire suppression totalled $565 million.

After an incredibly dry and challenging summer, winter bought record-breaking rainfall, which caused severe landslides and flooding, closing off all highways from southwest BC to the Interior. Hundreds of homes were evacuated, while thousands of livestock were killed as the waters rose. The towns of Merritt, Princeton and Tulameen were decimated as their rivers flooded.    

Climate scientists have predicted that extreme weather events, such as those experienced in British Columbia in 2021, will increase in frequency and severity, bringing massive loss and disruption, as well as high costs for governments.

flood photo

climate change certified

As a leader in green, energy-efficient building systems, we are dedicated to providing sustainable energy engineering to meet our client’s needs, and our consulting teams bring skill sets that are unique amongst engineering firms. Our experience with district energy systems (such as VIU’s Mine Water District Energy System in Nanaimo), low carbon heating systems, heat recovery systems, solar photovoltaic and renewable energy generation provide a unique range of energy-efficient design options that can be tailored to our client’s projects. Drawing on our extensive portfolio of successful projects, we work closely with our clients and design teams to achieve innovative and sustainable solutions rooted in established engineering principles. 

With our commitment to helping our clients achieve the most efficient electrical and mechanical systems possible, we looked at ways our company could do more to reduce our carbon footprint. To do this, we enlisted the help of Climate Neutral.   

What Is Climate Neutral?

Climate Neutral is a nonprofit organization working with brands and consumers to eliminate greenhouse gas emissions. It was launched in 2019 and now works with hundreds of companies across more than a dozen industries globally. In just three years, Climate Neutral Certified companies have measured and offset over 2,000,000 tonnes of CO2e, equivalent to over 430,000 passenger vehicles being driven for one year.

Our 2021 Carbon Footprint

We worked with Climate Neutral as we measured and offset last year’s carbon emissions and identified ways to reduce future emissions. The process to become Climate Neutral Certified is a months-long effort to measure, offset, and reduce our carbon footprint:

Measure

We measured our 2021 carbon footprint at 169 tonnes. To arrive at this number, we looked at all of the emissions created from delivering our services, including employee commuting, business travel, utility bills, paper, and computer equipment. 

Offset

We offset these emissions by purchasing verified carbon credits. These carbon credits supported a portfolio of projects including schemes that will help avoid deforestation, improve forest management, support solar power generation, and encourage bioenergy generation.

Reduce

Last, but not least, we created Reduction Action Plans to help lower our emissions over the next 12-24 months, and the following are our first steps towards achieving this goal:

  1. We will reduce emissions from air and car business travel

We will write and implement a travel policy to standardize and regulate travel bookings. We will encourage staff to combine multiple projects per trip and reduce the number of in-person meetings by conducting virtual meetings.

  1. We will reduce emissions from employees commuting into the office.

We will be improving the bike storage area so that more staff can cycle to work and store their bike securely. We intend to introduce a bike-to-work incentive/sweepstake to encourage staff to walk, use public transport or cycle.

  1. We will reduce emissions from the use of paper contracts and couriers.

We have signed up with DocuSign to digitally send all our contracts in 2022. This will save paper and reduce emissions by cutting the use of couriers to deliver the physical documents.

To The Future

Falcon Engineering hopes to engage fellow consulting firms, contractors, and others in the industry to join in the commitment to reduce our impact.  The hundreds of brands certifying this year all go through the same process to measure, offset, and reduce their emissions. Together, Climate Neutral Certified companies are working to eliminate more than 1,000,000 tonnes of carbon emissions.  

At Falcon, we know we have to act now to solve a problem that we understand to be an urgent threat. We have committed to reducing our carbon footprint by 50% by 2030 and our Reduction Action Plans will help in achieving this goal. Climate change requires immediate action, and we’re proud to be part of the solution.

Climate neutral certified